Title: Variation in infection length and superinfection enhance selection efficiency
in the human malaria parasite

Hsiao-Han Chang, Lauren M. Childs, and Caroline O. Buckee

Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard
T.H. Chan School of Public Health, Boston, MA 02115, USA

Supplementary materials



Supplementary text
Model assumptions and implications
The number of infected hosts does not vary with the proportion of chronic infections

It has become increasingly clear that the asymptomatic reservoir for malaria
transmission is substantial, even in relatively low transmission settings'*. Although it is
generally assumed that fewer infections are asymptomatic at low transmission intensity, due to
limited herd immunity, the impact of transmission setting on the evolution of the parasite is key
to understanding its response to interventions. Therefore, we hold the number of infected hosts
constant, and vary the proportion that are chronic, to explore the impact of long-lived infections
on parasite evolution. We assume that the number of infected hosts is at equilibrium and does
not vary with the proportion of chronic infections in order to make a comparison of the
probability of fixation across models. It is known that the probability of fixation is sensitive to the
initial allele frequency in the population due to the effect of genetic drift, and the initial allele
frequency is determined by the total number of infected hosts in the model (Figure S4). It is
expected that the probability of fixation is smaller when the number of infected hosts is larger in
the case of neutral mutation. However, in the case when mutation is not neutral, as we are
considering, there is no simple association with the size of the population. Because our goal is
to study the effect of variation in infection length on selection but not the effect of initial allele
frequency, we control for the number of infected hosts across models.

Simplifying within-host dynamics

Simplifying within-host dynamics is standard in the population genetic models of malaria
parasites to make simulations computationally tractable *>2. In our previous work, we showed
that genetic drift and selection are both affected by repeated within-host expansion and
between-host bottlenecks *'°. To study the effect of variation in infection length on the efficiency
of selection, we include the repeated within-host expansion and between-host bottlenecks.

We assume that parasites undergo 12 replication cycles in the mosquito to reach the
parasite population size of ~10* after 10 days. Because expansion of the parasite in the oocyst
is not well understood and the number of sporozoites (in the order of 10*) and the number of
days it takes to produce sporozoites period (10 days) are known (Table S1), we assume 12
replications in 10 days to fit the number of sporozoites that is known. Because we assume the
mutation is neutral within the mosquito host, the number of replications in the mosquito host is
not expected to change the results qualitatively.

We do not differentiate liver and blood stages of malaria parasites, and simplify the
replication process within the human host by assuming that each replication leads to in average
16*0.9 parasites. If we were to include different parasite stages in the model, we expect the
magnitude of our results to be shifted slightly, but the relative relationship between models will
not be affected.

Same infectiousness of chronic and acute patients
We assume chronic and acute patients have the same infectiousness because the

relationship between parasite density and infectiousness to mosquitoes is uncertain "*'"". We
showed that even when acute infections are twice as infectious as chronic infections, the



relationship between the probability of fixation and the proportion of chronic infections remains
the same (Fig. S5). If acute infections are orders of magnitude more infectious, we expect the
balance of forces shown in Fig. 2 to shift.
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Supplementary Figure S1. The probability of fixation and the time to fixation in acute-
infection and chronic-infection models as selective force varies. The probability of fixation
is higher in the chronic model (blue symbols) than in the acute model (red symbols), except for
between-host (shotm+) model, and increases with as the selection coefficient increases. The time
to fixation is higher in the chronic model than in the acute model and decreases with the
selection coefficient except for when there is only within-host advantage (s;,"t,). In the chronic
model, the length of infection is assumed to be 200 days.
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Supplementary Figure S2. The probability of fixation and the time to fixation in the short acute-infection and varying length chronic-
infection models. (A) The probability of fixation (solid circles) increases with the duration of the chronic infection when the mutation is beneficial
within the host (s,t,,” and s,*t,,"), but does not change or decreases when the mutation is beneficial during the transmission (s;’t," and s, t,,*). The
time to fixation (triangles) increases with duration of infection in all models. (B) Incorporating superinfection greatly enhances (note different y axes)
the probability of fixation in the chronic-infection model (blue symbols) compared to (A). With superinfection, the time to fixation decreases with the
duration of infection in cases where the mutation is beneficial within the host (s,,*tmo, sy'tn’, and s,'t,"); the time to fixation increases with the length
of infection when the mutation is only advantageous during transmission but not within the host (s,’t,," and s, t,").
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Supplementary Figure S3. lllustration of transmission dynamics in models with different
proportion of chronic infections. The proportion of chronic infections (A) 100 % (B) 75 % and
(C) 50 % where light blue and red boxes indicate chronic and acute infections, respectively.
Blue and red lines represent infections transmitted from chronic and acute infections,
respectively. Dark blue box indicates hosts with mutations that originally arose in chronic
infections. The population with a lower proportion of chronic infections has a higher turnover
rate. Thus, a mutation occurring in chronic infections has a higher chance to be transmitted and
increase in frequency through rapidly cleared acute infections. This figure is a simplified
example to help build intuition on the dynamics of the system.
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Supplementary Figure S4. The impact of prevalence on the probability of fixation. Generally, the results are qualitatively similar when the total
number of infections (N), a proxy for prevalence in our model, was varied (shaded green lines) between 1000 and 3000. When the prevalence
differs, the probability of fixation is qualitatively the same, except when between-host selection is advantageous but within-host selection is neutral
(sx’t,* right column), which is highly influenced by stochastic frequency fluctuations within the host. More variability is also seen when the proportion
of chronic infections is low (left three panels).
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Supplementary Figure S5. Doubling the infectiousness of acute to chronic infections does not change the negative association between
the probability of fixation and the proportion of chronic infections. The probability of fixation (solid circles) and time to fixation (triangles) was
determined in a mixed acute or mixed chronic model excluding (A) or including (B) superinfection.
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Figure S6. Schematic diagram of the model.



Supplementary Table S1. List of parameters and their baseline values

Parameters Meaning Baseline value Reference
N The number of infected human hosts 1000
Sh Selection coefficient within human hosts 0 (s,))
0.1 (si")
-0.01 (s;7)
tm Transmission coefficient from human to mosquito 0 (£,
0.1 (tn')
-0.01 (4,
D The number of parasites transmitted from one host 10 1213
to another
A The ratio of the number of infected mosquito hosts 10 10
to the number of infected human hosts
P The probability of surviving in each replication 0.9 1314
during population expansion within hosts
B The relative infectiousness of acute to chronic 1 1211
infections
Nex Within-human parasite population size ~10" onday20 "
Nowm Within-mosquito parasite population size ~10*onday 10  '2™315

Duration of infection in the human host
Time to become infectious in the mosquito

Time to become infectious in the human host

20-200 days
10

20 days

16-18

19,20

21




Supplementary Table S2. Within-host frequency of mutation on day 20 and day 200
without superinfection

Sh Mutation time Initial Average frequency Average frequency
frequency on day 20 on day 200

0.01  1%replication  6.9x 107 7.5x 107 2x 107

0.1 1% replication ~ 6.9x 107 1.48x% 107 9.88x 10

0.01  4"replication  2.33x 10° 2.44x 10°® 7.68x 10°

0.1 4" replication ~ 2.33x 10°® 3.75x 10° 3.6x 102




Supplementary Table S3. The comparison of the probability of fixation when controlling
for the average incidence

Model Prob. of fixation when Prob. of fixation when
proportion chronic = 0.5 proportion chronic = 0.9

Acute, without superinfection

Within-host, s;"t,’ 2.40% 10°® 4.87x 107
Trade-off within-host, s,'t," 1.06x 107 0
Both, s,*t," 1.98x 10™ 1.74x 10™*
Trade-off between-host, s, t,," 3.04x 10° 2.60x 10°
Between-host, s,’t,," 2.20% 10° 1.99x 10
Acute, with superinfection
Within-host, s,"t,’ 9.47x 10™ 9.13x 10™
Trade-off within-host, s, 9.66x 10™ 8.87x 10™
Both, sp*t," 1.09x 107 1.02x 1073
Trade-off between-host, s, t," 0 0
Between-host, s,°t,," 5.71x 10° 5.17x 10°
Chronic, without superinfection
Within-host, s,"t,’ 2.07x 10® 4.50x 10™
Trade-off within-host, s,*t," 2.37x10° 0
Both, s,*t," 1.44x 10 1.33x 10
Trade-off between-host, s, t," 1.77x 10™ 1.30x 107
Between-host, s,’t,," 1.92x 1073 1.65% 107
Chronic, with superinfection
Within-host, s;"t,’ 9.74x 10 9.68x 10
Trade-off within-host, s, 9.74x 10 9.66x 10
Both, sp'tn" 9.83x 10 9.76x 10
Trade-off between-host, s, t," 0 0
Between-host, s,°t,," 4.98x 10° 3.87x 10°
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